skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Morrison, Elise"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available March 1, 2026
  3. Today’s challenges with sustainability are driven by complexity, lack necessary information, resist straightforward solutions, span multiple scales, and encompass diverse or sometimes conflicting perspectives. To tackle these issues effectively, research organizations need tools that support and accelerate the integration of disciplinary knowledge across both natural and social sciences so that they can explore and execute workable solutions. Boundary objects are tools that can bring diverse perspectives together through a shared point of focus that is meaningful across different groups and perspectives, enhancing communication between them. Here, we introduce a framework to develop Triple Bottom Line Scenario Sites (TBL Sites) as “convergence” boundary objects and intervention testbeds to support a holistic approach to sustainability research within multidisciplinary and multi-institutional organizations. We describe four key criteria used to identify a potential TBL Site: (1) proximity to researchers, (2) a bounded geographic location encompassing a particular ecosystem, (3) an integrated stakeholder network, and (4) access to existing resources. We explain how TBL Sites may be used to assess research impacts on environmental, economic, and social sustainability goals. Finally, we provide examples of aquatic, agricultural, and urban TBL Sites used by the Science and Technologies for Phosphorus Sustainability (STEPS) Center, demonstrating how these boundary objects facilitate convergence across a large multidisciplinary research team to tackle sustainable phosphorus management. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Abstract In salt marshes of the Southeastern USA, purple marsh crabs (Sesarma reticulatum), hereafterSesarma, aggregate in grazing and burrowing fronts at the heads of tidal creeks, accelerating creek incision into marsh platforms. We explored the effects of this keystone grazer and sediment engineer on salt marsh sediment accumulation, hydrology, and carbon (C) and nitrogen (N) turnover using radionuclides (210Pb and7Be), total hydrolyzable amino acids (THAA), and C and N stable isotopes (δ13C and δ15N) in sediment from pairedSesarma-grazed and un-grazed creeks.Sesarma-grazed-creek sediments exhibited greater bioturbation and tidal inundation compared to sediments in un-grazed creeks, as indicated by larger210Pb and7Be inventories. Total organic carbon (TOC) to total nitrogen (TN) weight ratios (C:N) were higher and δ15N values were lower in grazed-creek sediments than in un-grazed-creek sediments, suggestingSesarmaremove and assimilate N in their tissues, and excrete N with lower δ15N values into sediments. In support of this inference, the percent total carbon (TC) and percent TOC declined by nearly half, percent TN decreased by ~ 80%, and the C:N ratio exhibited a ~ threefold increase betweenSesarmafore-gut and hind-gut contents. An estimated 91% ofSesarma’s diet was derived fromSpartina alterniflora,the region’s dominant salt marsh plant. We found that, asSesarmagrazing fronts progress across marsh landscapes, they enhance the decay ofSpartina-derived organic matter and prolong marsh tidal inundation. These findings highlight the need to better account for the effects of keystone grazers and sediment engineers, likeSesarma, in estimates of the stability and size of blue C stores in coastal wetlands. 
    more » « less
  5. Cultural eutrophication threatens numerous ecological and economical resources of Florida’s coastal ecosystems, such as beaches, mangroves, and seagrasses. In April 2021, an infrastructure failure at the retired Piney Point phosphorus mining retention reservoir garnered national attention, as 814 million liters of nutrient rich water were released into Tampa Bay, Florida over 10 days. The release of nitrogen and phosphorus-rich water into Tampa Bay – a region that had been known as a restoration success story since the 1990s – has highlighted the potential for unexpected challenges for coastal nutrient management. For a year after the release, we sampled bi-weekly at four sites to monitor changes in nutrients, stable isotopes, and phytoplankton communities, complemented with continuous monitoring by multiparameter sondes. Our data complement the synthesis efforts of regional partners, the Tampa Bay and Sarasota Bay Estuary Programs, to better understand the effects of anthropogenic nutrients on estuarine health. Phytoplankton community structure indicated an initial diatom bloom that dissipated by the end of April 2021. In the summer, the bay was dominated by Karenia brevis, with conditions improving into the fall. To determine if there was a unique carbon (C) and nitrogen (N) signature of the discharge water, stable isotope values of carbon (δ13C) and nitrogen (δ15N) were analyzed in suspended particulate material (SPM). The δ15N values of the discharge SPM were −17.88‰ ± 0.76, which is exceptionally low and was unique relative to other nutrient sources in the region. In May and early June of 2021, all sites exhibited a decline in the δ15N values of SPM, suggesting that discharged N was incorporated into SPM after the event. The occurrence of very low δ15N values at the reference site, on the Gulf Coast outside of the Bay, indicates that some of the discharge was transported outside of Tampa Bay. This work illustrates the need for comprehensive nutrient management strategies to assess and manage the full range of consequences associated with anthropogenic nutrient inputs into coastal ecosystems. Ongoing and anticipated impacts of climate change – such as increasing tropical storm intensity, temperatures, rainfall, and sea level rise – will exacerbate this need. 
    more » « less
  6. Tropical cyclones and other extreme coastal storms cause widespread interruption and damage to meteorological and hydrological measurement stations exactly when researchers need them most. There is a longstanding need to collect collocated and synchronized measurements in areas where storms severely damage civil/coastal infrastructure. To fill this observational gap, researchers led by author Masters developed a state-of-the-art monitoring station called a “Sentinel.” Sentinels are intended for temporary installation on the beach between the mean tidal datum and the sand dunes and are engineered to operate in and measure extreme wind, storm surge, wave, and hazardous water quality conditions. They are envisioned as a shared-use resource—a hardened IoT (Internet of Things) platform set up in the right place at the right time to study wind and wave loads, coastal erosion and morphology changes, water quality, and other processes during extreme coastal storms. 
    more » « less
  7. U.S. coastal economies and communities are facing an unprecedented and growing number of impacts to coastal ecosystems including beach and fishery closures, harmful algal blooms, loss of critical habitat, as well as shoreline damage. This paper synthesizes our present understanding of the dynamics of human and ecosystem health in coastal systems with a focus on the need to better understand nearshore physical process interactions with coastal pollutants and ecosystems (e.g. fate and transport, circulation, depositional environment, climate change). It is organized around two major topical areas and six subtopic areas: 1) Identifying and mitigating coastal pollutants, including fecal pollution, nutrients and harmful algal blooms, and microplastics; and 2) Resilient coastal ecosystems, which focuses on coastal fisheries, shellfish and natural and nature-based features (NNBF). Societal needs and the tools and technologies needed to address them are discussed for each subtopic. Recommendations for scientific research, observations, community engagement, and policies aim to help prioritize future research and investments. A better understanding of coastal physical processes and interactions with coastal pollutants and resilient ecosystems (e.g. fate and transport, circulation, depositional environment, climate change) is a critical need. Other research recommendations include the need to quantify potential threats to human and ecosystem health through accurate risk assessments and to quantify the resulting hazard risk reduction of natural and nature-based features; improve pollutant and ecosystem impacts forecasting by integrating frequent and new data points into existing and novel models; collect environmental data to calibrate and validate models to predict future impacts on coastal ecosystems and their evolution due to anthropogenic stressors (land-based pollution, overfishing, coastal development), climate change, and sea level rise; and develop lower cost and rapid response tools to help coastal managers better respond to pollutant and ecosystem threats. 
    more » « less
  8. null (Ed.)
    Keystone species have large ecological effects relative to their abundance and have been identified in many ecosystems. However, global change is pervasively altering environmental conditions, potentially elevating new species to keystone roles. Here, we reveal that a historically innocuous grazer—the marsh crab Sesarma reticulatum —is rapidly reshaping the geomorphic evolution and ecological organization of southeastern US salt marshes now burdened by rising sea levels. Our analyses indicate that sea-level rise in recent decades has widely outpaced marsh vertical accretion, increasing tidal submergence of marsh surfaces, particularly where creeks exhibit morphologies that are unable to efficiently drain adjacent marsh platforms. In these increasingly submerged areas, cordgrass decreases belowground root:rhizome ratios, causing substrate hardness to decrease to within the optimal range for Sesarma burrowing. Together, these bio-physical changes provoke Sesarma to aggregate in high-density grazing and burrowing fronts at the heads of tidal creeks (hereafter, creekheads). Aerial-image analyses reveal that resulting “ Sesarma- grazed” creekheads increased in prevalence from 10 ± 2% to 29 ± 5% over the past <25 y and, by tripling creek-incision rates relative to nongrazed creekheads, have increased marsh-landscape drainage density by 8 to 35% across the region. Field experiments further demonstrate that Sesarma- grazed creekheads, through their removal of vegetation that otherwise obstructs predator access, enhance the vulnerability of macrobenthic invertebrates to predation and strongly reduce secondary production across adjacent marsh platforms. Thus, sea-level rise is creating conditions within which Sesarma functions as a keystone species that is driving dynamic, landscape-scale changes in salt-marsh geomorphic evolution, spatial organization, and species interactions. 
    more » « less
  9. null (Ed.)
    Benthic animals profoundly influence the cycling and storage of carbon and other elements in marine systems, particularly in coastal sediments. Recent climate change has altered the distribution and abundance of many seafloor taxa and modified the vertical exchange of materials between ocean and sediment layers. Here, we examine how climate change could alter animal-mediated biogeochemical cycling in ocean sediments. The fossil record shows repeated major responses from the benthos during mass extinctions and global carbon perturbations, including reduced diversity, dominance of simple trace fossils, decreased burrow size and bioturbation intensity, and nonrandom extinction of trophic groups. The broad dispersal capacity of many extant benthic species facilitates poleward shifts corresponding to their environmental niche as overlying water warms. Evidence suggests that locally persistent populations will likely respond to environmental shifts through either failure to respond or genetic adaptation rather than via phenotypic plasticity. Regional and global ocean models insufficiently integrate changes in benthic biological activity and their feedbacks on sedimentary biogeochemical processes. The emergence of bioturbation, ventilation, and seafloor-habitat maps and progress in our mechanistic understanding of organism–sediment interactions enable incorporation of potential effects of climate change on benthic macrofaunal mediation of elemental cycles into regional and global ocean biogeochemical models. 
    more » « less